Zadatak 1.

Primjenom Cramerovog i Kronecker-Capellievog stava diskutirati i riješiti sistem linearnih jednadžbi u zavisnosti od realnih parametra $\alpha, \beta \in \mathbb{R}$.

\[
\begin{align*}
x + y + z &= 2 \\
-2x + \alpha y + 2z &= \beta \\
x + 2y + \alpha z &= 1
\end{align*}
\]

Rješenje:

\(a)\) $\alpha \neq -3 \land \alpha \neq 2$ jedinstveno rješenje sistema je:

\[
(x, y, z) = \left(\frac{2\alpha^2 - \alpha\beta - \alpha + 2\beta - 6}{(\alpha + 3)(\alpha - 2)}, \frac{\alpha\beta + 4\alpha - \beta}{(\alpha + 3)(\alpha - 2)} - \frac{-(\alpha + \beta + 6)}{(\alpha + 3)(\alpha - 2)} \right)
\]

\(b)\) $\alpha = -3 \land \beta \neq -3$, sistem nema rješenja. $\alpha = -3 \land \beta = -3$, sistem ima beskonačno mnogo rješenja $(x, y, z) = (-5t + 3, 4t - 1, t) \; \forall t \in \mathbb{R}$

\(c)\) $\alpha = 2 \land \beta \neq -8$, sistem nema rješenja. $\alpha = 2 \land \beta = -8$, sistem ima beskonačno mnogo rješenja $(x, y, z) = (3, -t - 1, t) \; \forall t \in \mathbb{R}$

Zadatak 2.

Zadana je matrica $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 1 \\ -1 & 2 & 2 \end{pmatrix}$. Odrediti A^2 i $P(A)^{-1}$ gdje je $P(A) = A^2 - 3A + E$

Rješenje:

$P(A) = \begin{pmatrix} -1 & -1 & -1 \\ -1 & -1 & 2 \\ 0 & -3 & -3 \end{pmatrix}$, $P(A)^{-1} = \begin{pmatrix} 3 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$

Zadatak 3.

Riješiti sistem matričnih jednadžbi

\[
A^2 \cdot X - Y = -E
\]

\[-X + A^{-1} \cdot Y = A
\]

gdje je $A = \begin{pmatrix} -5 & 2 \\ 5 & 4 \end{pmatrix}$

Rješenje:

\[
X = \begin{pmatrix} 26/30 \\ 5/35 \end{pmatrix}, Y = \begin{pmatrix} 31/30 \\ 0 \end{pmatrix}
\]
Zadatak 4.

Zadane su matrice A, B i C.

\[
A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 0 & -2 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -3 \\ -2 & 1 \end{pmatrix}
\]

Odrediti vrijednost matrice D ako je ona zadana izrazom:

\[
D = (6A - 16C^{-2}) \cdot B^T + 54(A \cdot C - 5B)^{-1} \cdot A^T
\]

Rješenje:

\[
D = \begin{pmatrix} -6 & -4 \\ 2 & 1 \end{pmatrix}
\]

Zadatak 5.

Zadana je matrica A. Odrediti sopstveni polinom, sopstvene vrijednosti i sopstvene vektore zadane matrice A.

\[
A = \begin{pmatrix} 1 & 8 & -7 \\ 2 & 7 & -5 \\ -4 & 4 & -8 \end{pmatrix}
\]

Rješenje:

\[
\varphi(\lambda) = -\lambda^3 + 81\lambda, \quad \lambda_1 = 0, \lambda_2 = 9, \lambda_3 = -9,
\]

\[
X = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & \frac{1}{2} \\ -1 & 0 & 2 \end{pmatrix}
\]